Absolute and relative ambiguity aversion A preferential approach

Simone Cerreia-Vioglio, Fabio Maccheroni, Massimo Marinacci

Università Bocconi

Oxford - September 2018

How do wealth levels impact preferences and ambiguity attitudes?

/ 23

э

- We provide behavioral definitions of decreasing, constant, and increasing absolute ambiguity aversion
- We characterize these notions for a large class of preferences
- We perform a similar exercise for *relative* ambiguity attitudes (in the paper)

(Ω,\mathcal{A}) measurable space, $\{\mathbb{P}_s\}_{s\in S}$ collection of probability measures on \mathcal{A}

 (Ω,\mathcal{A}) measurable space, $\{\mathbb{P}_s\}_{s\in S}$ collection of probability measures on \mathcal{A}

To every random payoff $H:\Omega \to \mathbb{R}$ corresponds

$$\begin{array}{rcl} h: & S & \to & \mathcal{P}\left(\mathbb{R}\right) \\ & s & \mapsto & h\left(\cdot \mid s\right) = \mathbb{P}_{s} \circ H^{-1}\left(\cdot\right) \end{array}$$

that maps s to the distribution of H under \mathbb{P}_s

 $(h(s) \text{ is a Borel probability measure on } \mathbb{R})$

 (Ω,\mathcal{A}) measurable space, $\{\mathbb{P}_s\}_{s\in S}$ collection of probability measures on \mathcal{A}

To every random payoff $H: \Omega \to \mathbb{R}$ corresponds

$$\begin{array}{rccc} h: & S & \to & \mathcal{P}\left(\mathbb{R}\right) \\ & s & \mapsto & h\left(\cdot \mid s\right) = \mathbb{P}_{s} \circ H^{-1}\left(\cdot\right) \end{array}$$

that maps s to the distribution of H under \mathbb{P}_s

 $(h(s) \text{ is a Borel probability measure on } \mathbb{R})$

Axiom (Consequentialism)

DM is indifferent between H and G if $H \approx G$ under \mathbb{P}_s for all $s \in S$

 (Ω,\mathcal{A}) measurable space, $\{\mathbb{P}_s\}_{s\in S}$ collection of probability measures on \mathcal{A}

To every random payoff $H:\Omega \to \mathbb{R}$ corresponds

$$\begin{array}{rccc} h: & S & \to & \mathcal{P}\left(\mathbb{R}\right) \\ & s & \mapsto & h\left(\cdot \mid s\right) = \mathbb{P}_{s} \circ H^{-1}\left(\cdot\right) \end{array}$$

that maps s to the distribution of H under \mathbb{P}_s

 $(h(s) \text{ is a Borel probability measure on } \mathbb{R})$

Axiom (Consequentialism)

DM is indifferent between H and G if $H \approx$ G under \mathbb{P}_s for all $s \in$ S

It is sufficient to consider preferences defined on (a subset of) $\mathcal{P}(\mathbb{R})^S$ (each *H* being replaced by the corresponding *h*)

CMM (Università Bocconi)

Absolute and relative ambiguity aversion

4 / 23

- (S, Σ) measurable space: *parameters* (or *models*)
- $\mathcal X$ simple probability measures on $\mathbb R$: monetary lotteries
- $\mathcal{F} = B_0\left(S, \Sigma, \mathcal{X}
 ight)$ simple and measurable maps from S to \mathcal{X} : acts
- \succsim complete preorder on \mathcal{F} : preference

Definition

A binary relation \succsim on ${\mathcal F}$ is a $rational \ preference$ iff it is a preference st

• given any x, y,
$$z \in \mathcal{X}$$
,

$$x \sim y \implies rac{1}{2}x + rac{1}{2}z \sim rac{1}{2}y + rac{1}{2}z$$
 (risk independence)

• given any $f,g\in \mathcal{F}$,

$$f\left(s
ight)\succsim g\left(s
ight)$$
 for all $s\in S\implies f\succsim g$ (monotonicity)

Regularity

Definition

A rational preference \succeq on \mathcal{F} is **regular** iff

• given any $x \in \mathcal{X}$, there exists a unique $r \in \mathbb{R}$ st

 $x \sim \delta_r$ (certainty equivalents)

• given any
$$x, y \in \mathcal{X}$$
,

 $x([r,\infty)) \ge y([r,\infty))$ for all $r \in \mathbb{R} \implies x \succeq y$ (dominance)

• given any $f, g, h \in \mathcal{F}$, the sets

 $\{\alpha \in [0,1]: \alpha f + (1-\alpha)g \succsim h\} \text{ and } \{\alpha \in [0,1]: h \succsim \alpha f + (1-\alpha)g\}$

(continuity)

3

イロト 不得下 イヨト イヨト

Let $\mathcal{T} \subseteq \mathbb{R}$ be a non-singleton interval

Definition

A continuous functional $I: B_0(S, \Sigma, T) \to \mathbb{R}$ is a **Chisini mean** iff

• given any
$$t \in T$$
,

$$I\left(t1_{S}
ight)=t$$
 (normalization)

• given any $\varphi, \psi \in B_0(S, \Sigma, T)$,

 $\varphi \geq \psi \implies I(\varphi) \geq I(\psi)$ (monotonicity)

A B F A B F

3

8 / 23

A representation result

For all $f \in \mathcal{F}$ and $u : \mathbb{R} \to \mathbb{R}$, set

$$u(f) = \int_{\mathbb{R}} u \, \mathrm{d}f : \quad S \quad \to \quad \mathbb{R}$$
$$s \quad \mapsto \quad \int_{\mathbb{R}} u \, \mathrm{d}f(s)$$

э

CMM (Università Bocconi)

A representation result

For all $f \in \mathcal{F}$ and $u : \mathbb{R} \to \mathbb{R}$, set

$$u(f) = \int_{\mathbb{R}} u \, df : S \to \mathbb{R}$$

$$s \mapsto \int_{\mathbb{R}} u \, df(s)$$

Theorem (CGMMS, 2011)

A binary relation \succeq on \mathcal{F} is a **regular rational preference** iff there exist a strictly increasing and continuous $u : \mathbb{R} \to \mathbb{R}$ and a Chisini mean $I : B_0(S, \Sigma, u(\mathbb{R})) \to \mathbb{R}$ st

$$f \succeq g \iff I(u(f)) \ge I(u(g))$$

for all f, $g \in \mathcal{F}$ In this case, u is cardinally unique and I is unique given u

A representation result

For all $f \in \mathcal{F}$ and $u : \mathbb{R} \to \mathbb{R}$, set

$$u(f) = \int_{\mathbb{R}} u \, df : S \to \mathbb{R}$$

$$s \mapsto \int_{\mathbb{R}} u \, df(s)$$

Theorem (CGMMS, 2011)

A binary relation \succeq on \mathcal{F} is a **regular rational preference** iff there exist a strictly increasing and continuous $u : \mathbb{R} \to \mathbb{R}$ and a Chisini mean $I : B_0(S, \Sigma, u(\mathbb{R})) \to \mathbb{R}$ st

$$f \succeq g \iff I(u(f)) \ge I(u(g))$$

for all f, $g \in \mathcal{F}$ In this case, u is cardinally unique and I is unique given u

If $u(\mathbb{R})$ is unbounded, we replace u with u - b so that $u(\mathbb{R}) - b$ is a cone

Classical examples

Random payoff are transformed into parametric expected utility profiles

$$H \mapsto h = \{h(s)\}_{s \in S} \mapsto u(h) = \left\{ \int u \, \mathrm{d}h(s) \right\}_{s \in S} = \left\{ \int u(H) \, \mathrm{d}\mathbb{P}_s \right\}_{s \in S}$$

subsequently profiles are aggregated by a Chisini mean I, eg,

Classical examples

Random payoff are transformed into parametric expected utility profiles

$$H \mapsto h = \{h(s)\}_{s \in S} \mapsto u(h) = \left\{ \int u \, \mathrm{d}h(s) \right\}_{s \in S} = \left\{ \int u(H) \, \mathrm{d}\mathbb{P}_s \right\}_{s \in S}$$

subsequently profiles are aggregated by a Chisini mean I, eg,

 \bullet Subjective Expected Utility $I\left(\varphi\right) =\int\varphi\,\mathrm{d}\mu$ hence

$$I(u(h)) = \int_{S} \left(\int_{\mathbb{R}} u \, \mathrm{d}h(s) \right) \mathrm{d}\mu(s)$$

 μ probability measure (Anscombe and Aumann, 1963)

Classical examples

Random payoff are transformed into parametric expected utility profiles

$$H \mapsto h = \{h(s)\}_{s \in S} \mapsto u(h) = \left\{ \int u \, \mathrm{d}h(s) \right\}_{s \in S} = \left\{ \int u(H) \, \mathrm{d}\mathbb{P}_s \right\}_{s \in S}$$

subsequently profiles are aggregated by a Chisini mean I, eg,

 \bullet Subjective Expected Utility $I\left(\varphi\right) =\int\varphi\,\mathrm{d}\mu$ hence

$$I(u(h)) = \int_{S} \left(\int_{\mathbb{R}} u \, \mathrm{d}h(s) \right) \mathrm{d}\mu(s)$$

 μ probability measure (Anscombe and Aumann, 1963)

• Robust Preferences I $(\varphi) = \inf_{\mu \in \mathcal{M}} \int \varphi \, \mathrm{d} \mu$ hence

$$I(u(h)) = \inf_{\mu \in \mathcal{M}} \int_{S} \left(\int_{\mathbb{R}} u \, \mathrm{d}h(s) \right) \mathrm{d}\mu(s)$$

 ${\cal M}$ set of probability measures (Gilboa and Schmeidler, 1989)

• Second Order Expected Utility $I(\phi) = v^{-1} \left(\int v(\phi) \ d\mu \right)$ hence

$$I(u(h)) = v^{-1}\left(\int_{S} v\left(\int_{\mathbb{R}} u \, \mathrm{d}h(s)\right) \mathrm{d}\mu(s)\right)$$

 μ probability measure, $v : u(\mathbb{R}) \to \mathbb{R}$ strictly increasing and continuous (Klibanoff, Marinacci, and Mukerji, 2005, Neilson, 2010)

• Second Order Expected Utility $I(\phi) = v^{-1} \left(\int v(\phi) \ d\mu \right)$ hence

$$I(u(h)) = v^{-1}\left(\int_{S} v\left(\int_{\mathbb{R}} u \, \mathrm{d}h(s)\right) \mathrm{d}\mu(s)\right)$$

 μ probability measure, $v : u(\mathbb{R}) \to \mathbb{R}$ strictly increasing and continuous (Klibanoff, Marinacci, and Mukerji, 2005, Neilson, 2010)

• Variational Preferences $I(\varphi) = \inf_{\mu \in \mathcal{P}(S)} \left(\int \varphi \, \mathrm{d}\mu + c(\mu) \right)$ hence

$$I\left(u\left(h\right)\right) = \inf_{\mu \in \mathcal{P}(S)} \left(\int_{S} \left(\int_{\mathbb{R}} u \, \mathrm{d}h\left(s\right)\right) \mathrm{d}\mu\left(s\right) + c\left(\mu\right)\right)$$

 $c: \mathcal{P}(S) \to [0, \infty]$ function such that $\inf_{\mu \in \mathcal{P}(S)} c(\mu) = 0$ (Maccheroni, Marinacci, and Rustichini, 2006) The Subjective Expected Utility specification corresponds to

Axiom (Independence)

Given any f, g, $h \in \mathcal{F}$ and any $\alpha \in (0, 1)$,

$$f \succeq g \iff \alpha f + (1-\alpha)h \succeq \alpha g + (1-\alpha)h$$

The Subjective Expected Utility specification corresponds to

Axiom (Independence) Given any f, g, $h \in \mathcal{F}$ and any $\alpha \in (0, 1)$, $f \succeq g \iff \alpha f + (1 - \alpha)h \succeq \alpha g + (1 - \alpha)h$

The other models correspond to weakenings of independence (see papers)

Comparative ambiguity attitudes (Ghirardato and Marinacci, 2002)

Let \succsim and \succsim' be regular rational preferences on ${\mathcal F}$

Definition

 \succeq is more ambiguity averse than \succeq' iff, given any $f \in \mathcal{F}$ and $x \in \mathcal{X}$,

$$f \succeq x \implies f \succeq' x$$

Comparative ambiguity attitudes (Ghirardato and Marinacci, 2002)

Let \succsim and \succsim' be regular rational preferences on ${\mathcal F}$

Definition

 \succeq is more ambiguity averse than \succeq' iff, given any $f \in \mathcal{F}$ and $x \in \mathcal{X}$,

$$f \succeq x \implies f \succeq' x$$

... as ambiguity averse as ... less ambiguity averse than ...

Comparative ambiguity attitudes (Ghirardato and Marinacci, 2002)

Let \succsim and \succsim' be regular rational preferences on ${\mathcal F}$

Definition

 \succeq is more ambiguity averse than \succeq' iff, given any $f \in \mathcal{F}$ and $x \in \mathcal{X}$,

$$f \succeq x \implies f \succeq' x$$

... as ambiguity averse as ... less ambiguity averse than ...

Theorem

 \succeq is more ambiguity averse than \succeq' if and only if u and u' are cardinally equivalent and, after choosing u = u', it follows $I \leq I'$

CMM (Università Bocconi)

13 / 23

Wealth shifts

The payoff of a DM with wealth w who makes a zero cost investment H is

$$H^w = w + H$$

which, for each $s \in S$, has distribution

$$h^{w} (B \mid s) = \mathbb{P}_{s} \circ (w + H)^{-1} (B) = \mathbb{P}_{s} (\omega \in \Omega : w + H (\omega) \in B)$$
$$= \mathbb{P}_{s} (\omega \in \Omega : H (\omega) \in B - w) = \mathbb{P}_{s} \circ H^{-1} (B - w)$$
$$= h (B - w \mid s)$$

for all $B \in \mathcal{B}$

CMM (Università Bocconi)

Wealth shifts

The payoff of a DM with wealth w who makes a zero cost investment H is

$$H^w = w + H$$

which, for each $s \in S$, has distribution

$$h^{w} (B \mid s) = \mathbb{P}_{s} \circ (w + H)^{-1} (B) = \mathbb{P}_{s} (\omega \in \Omega : w + H (\omega) \in B)$$
$$= \mathbb{P}_{s} (\omega \in \Omega : H (\omega) \in B - w) = \mathbb{P}_{s} \circ H^{-1} (B - w)$$
$$= h (B - w \mid s)$$

for all $B \in \mathcal{B}$

For all $f \in \mathcal{F}$ and $w \in \mathbb{R}$, set

$$f^{w}(B \mid s) = f(B - w \mid s)$$

for all $(B, s) \in \mathcal{B} \times S$

Let \succsim be a regular rational preference and arbitarily choose $w \in \mathbb{R}$

Given any $f,g\in\mathcal{F}$ set

$$f \succeq^w g \iff f^w \succeq g^w$$

Let \succsim be a regular rational preference and arbitarily choose $w \in \mathbb{R}$

Given any $f,g\in \mathcal{F}$ set

$$f \succeq^w g \iff f^w \succeq g^w$$

Lemma

If \succeq is a regular rational preference, then \succeq^w is a regular rational preference for all $w \in \mathbb{R}$

Absolute Ambiguity Aversion (AAA): definition

Definition

Let \succeq be a regular rational preference

• \succsim is decreasing absolute ambiguity averse iff, for all w < w' in ${\mathbb R}$

 \succeq^w is more ambiguity averse than $\succeq^{w'}$

• \succeq is constant absolute ambiguity averse iff, for all w < w' in ${\mathbb R}$

 \succeq^w is as ambiguity averse as $\succeq^{w'}$

• \succsim is increasing absolute ambiguity averse iff, for all w < w' in ${\mathbb R}$

 \succeq^w is less ambiguity averse than $\succeq^{w'}$

 \succeq is classifiable (in terms of AAA) iff one of the three above holds

Lemma

If a regular rational preference is classifiable, then \succeq^w coincides with $\succeq^{w'}$ on \mathcal{X} (absolute risk aversion is constant) for all $w, w' \in \mathbb{R}$. In particular, there exists $\alpha \in \mathbb{R}$ and $\beta > 0$ such that they can be represented by

$$u^{w}(r) = u^{w'}(r) = u(r) = \begin{cases} -\beta e^{-\alpha r} & \text{if } \alpha > 0\\ \beta r & \text{if } \alpha = 0\\ \beta e^{-\alpha r} & \text{if } \alpha < 0 \end{cases}$$

for all $r \in \mathbb{R}$

CMM (Università Bocconi)

Lemma

If a regular rational preference is classifiable, then \succeq^w coincides with $\succeq^{w'}$ on \mathcal{X} (absolute risk aversion is constant) for all $w, w' \in \mathbb{R}$. In particular, there exists $\alpha \in \mathbb{R}$ and $\beta > 0$ such that they can be represented by

$$u^{w}(r) = u^{w'}(r) = u(r) = \begin{cases} -\beta e^{-\alpha r} & \text{if } \alpha > 0\\ \beta r & \text{if } \alpha = 0\\ \beta e^{-\alpha r} & \text{if } \alpha < 0 \end{cases}$$

for all $r \in \mathbb{R}$

Classifiable regular rational preferences are CARA and

- risk averse iff $\alpha > 0$
- risk neutral iff $\alpha = 0$
- risk loving iff $\alpha < 0$

Definition

- Let T be a cone in \mathbb{R} and $I: B_0(S, \Sigma, T) \to \mathbb{R}$
 - I is positively superhomogeneous iff, given any $\varphi \in B_0(S, \Sigma, T)$

$$I\left(\lambda\varphi\right) \geq \lambda I\left(\varphi\right) \qquad \forall \lambda \in (0,1)$$

• I is positively homogeneous iff, given any $\varphi \in B_0(S, \Sigma, T)$

$$I(\lambda \varphi) = \lambda I(\varphi) \qquad \forall \lambda \in (0,1)$$

• I is positively subhomogeneous iff, given any $\varphi \in B_0(S, \Sigma, T)$

$$I(\lambda \varphi) \leq \lambda I(\varphi) \qquad \forall \lambda \in (0,1)$$

Definition

- Let T be a positive cone in \mathbb{R} and $I: B_0(S, \Sigma, T) \to \mathbb{R}$
 - *I* is **constant superadditive** iff, given any $\varphi \in B_0(S, \Sigma, T)$

$$I(\varphi + \lambda) \ge I(\varphi) + \lambda \qquad \forall \lambda \in (0, \infty)$$

• *I* is constant additive iff, given any $\varphi \in B_0(S, \Sigma, T)$

$$I(\varphi + \lambda) = I(\varphi) + \lambda \qquad \forall \lambda \in (0, \infty)$$

• I is constant subadditive iff, given any $\varphi \in B_0\left(S, \Sigma, T\right)$

$$I(\varphi + \lambda) \le I(\varphi) + \lambda \qquad \forall \lambda \in (0, \infty)$$

Theorem

Let \succeq be a regular rational preference on \mathcal{F} . Then \succeq is **decreasing absolute ambiguity averse** iff one of the three following statements is satisfied:

(i) u is CARA, risk averse, and I is positively superhomogeneous
(ii) u is CARA, risk neutral, and I is constant superadditive
(iii) u is CARA, risk loving, and I is positively subhomogeneous

CARA risk averse	CARA risk neutral	CARA risk loving	۲۲
l sup homo	/ cost sup add	l sub homo	DAAA
1 homo	/ cost add	l homo	СААА
l sub homo	/ cost sub add	I sup homo	ΙΑΑΑ

(日) (同) (三) (三)

æ

Corollary

Let \succeq be a CARA variational preference

• If it is risk neutral or a robust preference, then it is CAAA

Else

- if it is risk averse, then it is DAAA
- if it is risk loving, then it is IAAA

- Characterization of AAA for many other special cases (eg, SOEU)
- General characterization of RAA (plus special cases)
- Quadratic approximations, ambiguity premia, and ambiguity attitudes
- Beyond CARA/CRRA